08-20 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the horseshoe challenge in the shortest possible time.

- LIMIT Enrollment to: 18 students
- "Welcome to Robotics" handout (Complete)
- Make Name Tents (black marker, tri-fold long ways, first and last name both sides, thick paper)
- Syllabus, Safety contract, Procedure (Signatures DUE NEXT CLASS)
- Choose teams from a hat (6 teams of 3)
- Assemble 6 Complete kits
- Start Building robot
- Lab01 Horseshoe Challenge
- DOL

ANNOUNCEMENTS/HOMEWORK:

Notes to Self:

Fix All in Learning roster

08-22 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the horseshoe challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Sort Kits
- Choose Teams
- Assign Pocket/Laptop/Clicker Number
- Only use your laptop, always plug in
- Double-check you are aren't leaving LEGO parts on the ground or on the tables
- Download the newest version of LEGO EV3 Software
- Download EV3 iPhone or Android app
- Connect EV3 to laptop test
- Connect EV3 to smart phone test
- Lab01 Horseshoe Challenge
- Design/Build Day
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

08-24 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the horseshoe challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab01 Horseshoe Challenge
- Design/Build Day
- Start Competition (time event)
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

09-06 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the cup collector challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab02 Cup Collector Challenge
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

09-08 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the cup collector challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab02 Cup Collector Challenge
- Competition Day (round robin, every team member must drive at least once)
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

09-12 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

09-08 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

09-12 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

09-14 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Competition Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

09-16 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Competition Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

09-20 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Competition Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

09-22 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Competition Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

09-26 Lego EV3 remote

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and smart phones, build a robot that completes the basketball challenge in the shortest possible time.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanics, DC Motors, Servo Motors
- Lab03 Basketball Challenge
- Competition Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

09-28

Lego EV3 3-D Autonomous

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that move in a perfect square.

- WARM UP
- Teamwork and Strategy
- FOCUS: Autonomous, Programming
- No sensors, clockwise, stay within 1 foot of the black line.
- Lab04 Perfect Square
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

09-30

Lego EV3 3-D Autonomous

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that move in a perfect square.

- WARM UP
- Teamwork and Strategy
- FOCUS: Autonomous, Programming
- Lab04 Perfect Square
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

10-04 Lego EV3 3-D Autonomous

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that follows a line on the floor.

- WARM UP
- Teamwork and Strategy
- FOCUS: Autonomous, Programming
- SENSORS: Infrared, Color
- Lab05 Simple Line Follower
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

10-06

Lego EV3 3-D Autonomous

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that follows a line on the floor.

- WARM UP
- Teamwork and Strategy
- FOCUS: Autonomous, Programming
- SENSORS: Infrared, Color
- Lab05 Simple Line Follower
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

•

10-10 Lego EV3 3-D Autonomous

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that follows a line on the floor.

- WARM UP
- Teamwork and Strategy
- FOCUS: Autonomous, Programming
- SENSORS: Infrared, Color
- Lab06 Complex Line Follower
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

10-12 Lego EV3 3-D Autonomous

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that follows a line on the floor.

- WARM UP
- Teamwork and Strategy
- FOCUS: Autonomous, Programming
- SENSORS: Infrared, Color
- Lab06 Complex Line Follower
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

10-14 Lego EV3 (Battle Bots)

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that negotiates a given maze.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanical, Remote
- SENSORS: Touch, Sonar
- Lab07 Simple Maze
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

10-18 Lego EV3 (Battle Bots)

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that negotiates a given maze.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanical, Remote
- SENSORS: Touch, Sonar
- Lab07 Simple Maze
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

10-20 Lego EV3 (Battle Bots)

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that negotiates a given maze.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanical, Remote
- SENSORS: Touch, Sonar
- Lab07 Simple Maze
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

10-25 Lego EV3 (Battle Bots)

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that negotiates a given maze.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanical, Remote
- SENSORS: Touch, Sonar
- Lab08 Complex Maze
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

10-27 Lego EV3 (Battle Bots)

LO — Design and construct a remote controlled robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, using LEGO EV3 kits and program, build a robot that negotiates a given maze.

- WARM UP
- Teamwork and Strategy
- FOCUS: Mechanical, Remote
- SENSORS: Touch, Sonar
- Lab08 Complex Maze
- Design/Build Day
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

10-31 Arduino Labs (1 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build Circuit #1 "Blinking LED", Circuit #2 "Potentiometer", and Circuit #3 "RGB LED".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab01 "Blinking LED"
- Lab02 "Potentiometer"
- Lab03 "RGB LED"
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

11-02 Arduino Labs (2 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build Circuit #4 "Multiple LEDs", Circuit #5 "Push Buttons", and Circuit #6 "Photo Resistor".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab04 "Multiple LEDs"
- Lab05 "Push Buttons"
- Lab06 "Photo Resistor"
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

11-06 Arduino Labs (3 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build Circuit #7 "Temp Sensor", Circuit #8 "A Single Servo", and Circuit #9 "Buzzer".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab04 "Temperature Sensor"
- Lab05 "A Single Servo"
- Lab06 "Buzzer"
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

11-08 Arduino Labs (4 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build Circuit #10 "Spinning a Motor", Circuit #11 "Relays".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab10 "Spinning a Motor"
- Lab11 "Relays"
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

11-12 Arduino Labs (5 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build Circuit #12 "Shift Register", Circuit #13 "LCD Screen".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab12 "Shift Register"
- Lab13 "LCD Screen" (Lookup online)
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

11-14 Arduino Labs (6 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build design a musical instrument.

- WARM UP
- Download the necessary IDE onto the laptops
- Design a music playing device
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

11-16 Arduino Labs (7 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Arduino kits, build design a musical instrument.

- WARM UP
- Download the necessary IDE onto the laptops
- Design a music playing device
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

11-27

Raspberry Pi Labs (1 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #1".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab01
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

11-29 Raspberry Pi Labs (2 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #2".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab02
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

12-03 Raspberry Pi Labs (3 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #2".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab02
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

12-05 Raspberry Pi Labs (4 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #2".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab02
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

12-07 Raspberry Pi Labs (5 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #2".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab02
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

12-11 Raspberry Pi Labs (6 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #2".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab02
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

12-13

Raspberry Pi Labs (3 of 7)

LO — Design, construct and program an Arduino-based electro-mechanical system.

DOL — Working in teams of 2, using Raspberry Pi kits, build Circuit #2".

- WARM UP
- Download the necessary IDE onto the laptops
- Lab02
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

12-17

Special Project (1 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

12-19 Special Project (2 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

12-11

Special Project (3 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

01-09 Special Project (4 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

01-11 Special Project (5 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

01-15 Special Project (6 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

01-17 Special Project (7 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

01-22 Special Project (8 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

01-24 Special Project (9 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

01-28 Special Project (10 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

01-30 Special Project (11 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

02-01 Special Project (12 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

02-05 Special Project (13 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

02-07 Special Project (14 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

02-11

Special Project (15 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

02-13 Special Project (16 of 16)

LO — Design and construct a robot to complete a pre-determined engineering challenge.

DOL — Working in groups of 3 or 4, use the kits to design, build, and program a robot.

- WARM UP
- Al Kit Nvidia Jetson Nano
- Lab 01
- Design
- Construction
- Software/ Programming
- Debug
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

02-19 Capstone Project (1 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

02-21

Capstone Project (2 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

02-25

Capstone Project (3 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

02-27 Capstone Project (4 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

03-01 Capstone Project (5 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

03-05 Capstone Project (6 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

03-07 Capstone Project (7 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

03-18 Capstone Project (8 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

03-20 Capstone Project (9 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

03-22 Capstone Project (10 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

03-26 Capstone Project (11 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

03-28 Capstone Project (12 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

04-01 Capstone Project (13 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

04-03

Capstone Project (14 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

04-05

Capstone Project (15 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

04-09 Capstone Project (16 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

04-11

Capstone Project (17 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

04-15

Capstone Project (18 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

04-17 Capstone Project (19 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

04-23

Capstone Project (20 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

04-25

Capstone Project (21 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

04-29 Capstone Project (22 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-01 Capstone Project (23 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-03 Capstone Project (24 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

05-07 Capstone Project (25 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-09

Capstone Project (26 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-13

Capstone Project (27 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

05-15 Capstone Project (28 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-17 Capstone Project (29 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-21 Capstone Project (30 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

05-23 Capstone Project (31of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

ANNOUNCEMENTS/HOMEWORK:

05-28

Capstone Project (32 of 20)

LO — Develop a solution to a challenging engineering problem.

DOL — Working in teams, using the knowledge you gained in the course, define a problem and develop a solution. Provide a prototype.

- WARM UP
- Define the problem
- Develop a solution
- Debug and repeat
- Write your journal entries in your engineering notebooks in real-time. Follow the guidelines provided.
- DOL

~ Lesson Plans 2018 - 2019	Robotics	David McLoda ~

~ Lesson Plans 2018 - 2019......Robotics......David McLoda ~

Science Department